TRANSFORMERS DECODED: THE HANDBOOK

March 27, 2025 A QUICK GUIDE TO ML RESEARCH Bella Nicholson

0. CONTENTS

1 The Attention Mechanism 3
1.1 Historyo oo e 3

1.2 What does self-attention accomplish? 4

1.3 How does self-attention work? 6

1.4 Multi-Head Attention. 0 e e e e e e 10

1.5 Properties e 11

1.6 Positional Encodings 16

2 Transformer Architectures 18
21 Decoder Only Transformers 18

2.2 Encoder-Decoder Transformers i i vt v it e 22
221 Limitations e e e e e e e e e 23

3 Foundation Model Lifecycle 23
3.1 DataCuration 0t i i e e e e e e e e 24
3.2 Training Deep Networks L 25

3.3 Training Transformers e 28
331 Pre-Training e 28

332 Post-Training 29

34 Inference e e e e e e e e e 30
3.41 Retrieval Augmented Generation (RAG) 30

35 WorkingatScale. 31
3.5.1 Parallelization Strategies 31

352 Kernel Development oo 32

4 Model Compression 33
41 Quantization e e e e e e e e 33
42 ModelPruning e 35
43 Knowledge Distillation oo o 36

5 Inference Optimizations 36
51 Combined QKV Projection 37
52 KV Caching e 39
5.3 Flash Attention e e e e e 41
54 Mixtureof Experts 42
55 Multi-Query Attention L L Lo 43
5.6 SpeculativeDecoding L L 44
5.7 Continuous Batching L L 47

Transformers Decoded: The Handbook

6 Fine-Tuning Optimizations 48
6.1 Low-Rank Adaptation 48
References 50

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

1. THE ATTENTION MECHANISM

The attention mechanism is a relatively recent type of neural network layer that has attracted
significant interest, particularly for sequence-to-sequence tasks.

o What is attention? At its core, attention is a dynamically calculated weighted average. It
allows the model to focus on different parts of the input sequence when producing an output,
effectively capturing relationships between different elements.

a a
DEFINITION 1
The attention mechanism describes a weighted average of (sequence) elements with dy-

namically computed weights.

1.1 History

The "Attention Is All You Need" paper by Vaswani et al. (2017)! popularized attention in deep

learning, but the concept itself has older roots.

* Early inspiration. The idea of "attention" has its roots in cognitive science, where it refers to
selectively focusing on certain aspects of information while ignoring others. This concept
influenced pre-deep learning work in machine learning and natural language processing.

e Introduction of Attention in Deep Learning. The attention mechanism was first introduced in
neural machine translation by Bahdanau et al. (2014) in their "Neural Machine Translation

by Jointly Learning to Align and Translate" paper? .

o This work addressed limitations of earlier encoder-decoder architecture by allowing the
decoder to "attend" to different parts of the source sentence when generating each word
of the target sentence.

o This allows the neural network to effectively capture long-range dependencies.
o Concurrent explorations in computer vision. Around the same time (in 2015), researchers began

exploring attention in computer vision tasks like image captioning, where the model needed
to focus on different parts of an image when generating a descriptive caption.

* Growing popularity. During this period, various forms of attention were developed and ap-
plied to different tasks, including;:
o Soft attention: Assigns weights to all parts of the input.
o Hard attention: Selects only a single part of the input
o Local attention: Focuses on a small window of the input.
o "Attention Is All You Need” paper. Vaswani et al. (2017) introduced the Transformer architec-

ture, which relies entirely on attention mechanisms, replacing recurrence (RNNs) and con-
volutions (CNNs). Key innovations include:

https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/1409.0473
https://arxiv.org/abs/1409.0473
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

o Self-attention: Allows the model to attend to different parts of the same sequence.
o Multi-head attention: Use multiple attention mechanisms in parallel

This led to significant improvements in performance and efficiency, particularly in NLP tasks,
and sparked widespread adoption of attention

* Modern day. Since the introduction of Transformers, attention has become a fundamental
building block in many deep learning models. Current research focuses on:

o Sparse attention: reduce the computational cost by only computing attention scores for
a subset of all possible pairs

o Linear attention aims to reduce the computational complexity from quadratic O(n?) to
linear O(n) with respect to the sequence length. It achieves this by changing the way
attention scores are calculated.

EXAMPLE 1. Change the similarity function such that we use kernels instead of a
scaled dot product.
o Attention with inductive biases: incorporate prior knowledge into the attention mecha-
nism.
KEY CONCEPT 1. Vaswani et al.’s "Attention Is All You Need" paper built upon prior work by

introducing self-attention and the Transformer architecture.

| KEY CONCEPT 2. The Transformer architecture relies exclusively on attention mechanisms.

1.2 What does self-attention accomplish?

Self-attention resolves language ambiguity by modeling relationships between words in a sen-
tence. Consider Jay Alammar’s example from the "The Illustrated Transformer" blog post:3

"The animal didn’t cross the street because it was too tired."

Does "it" refer to "the animal" or "the street"? While humans intuitively understand the con-
nection, pre-Transformer models struggled with this type of ambiguity. Self-attention allows the
model to capture dependencies between words, establishing the link between "the animal" and

”it.”

https://jalammar.github.io/illustrated-transformer/
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

The_
animal_
didn_

street_
because_
it_
was_

too

tire

The_
animal_
didn_

t
Cross_
the_
street_

because_

was_
too_
tire

Figure 1: Attention models the dependencies between tokens, resolving language ambiguities (image

Self-attention is a global communication mechanism* that update each token’s embedding rep-

resentation based on its surrounding context, which is the embedding representations of other

tokens.?

¢ Example. In Figure 2-3, self-attention aggregates information about "fluffy", "blue", and "crea-

ture" to create a representation of a "fluffy blue creature".

V. % A . : . T
alfluffy|blue|creature verdant| forest)|
Vol

E, B

Figure 2: The attention mechanism updates each token’s individual embedding representation to include
information from its neighboring tokens (image credit).

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://www.youtube.com/watch?v=eMlx5fFNoYc
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

Figure 3: After training with self-attention, our "create" embedding gets updated in the direction of "blue"
and "fluffy" in the embedding space. (image credit).

On a more granular level, self-attention calculates how important other tokens are to a given
token. Each token’s information is scaled against its importance score, and we add every

token’s scaled information to the given token embedding.

Original

embedding

Figure 4: We scale and add all other tokens” information to the original token embedding (image credit).

* Learning embedding representations. In practice, we initialize our token embedding represen-
tations at random. During training, a Transformer uses self-attention to learn meaningful

embedding representations for each token.

KEY CONCEPT 3. Transformers learn the correct token embedding representations on
their own. Meaning, they require little manual feature engineering.

Y e
-éo\cn.n‘a 4.1-‘*"“"‘ /.ﬁ
aﬁ- et ;_) emb‘-d;:ﬁ: —_—_— -!aa.ns?zor”\ﬂ—t.
:.:wpdm s zn\“"“\‘z‘how 2 —; A ﬂfﬂ‘ inpet
Q"\‘a'-d X .“’,P*
2 e ised =« C(=

Figure 5: The Transformer learns meaningful token embeddings from a random initialization. Normally,
Aembed = Amodel and the linear mapping isn’t required.

1.3 How does self-attention work?

As a pre-processing step, we convert each input token into a dense embedding vector representa-
tion in these two steps:*®

1. Represent the input token as one-hot vectors X, € R°*?, where s := sequence length and

v := vocab size.

https://www.youtube.com/watch?v=eMlx5fFNoYc
https://www.youtube.com/watch?v=eMlx5fFNoYc
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

2. Map these token token representations to dense vector embeddings using a weight matrix to
get Xembed € R&*embed , where dempeq := embedding hidden dimensionality.

3. The self-attention layer expects an input of Xjnput € R® Xdmodel where dppogel := the overall

model dimensionality.

* If dembed 7 Amodel, We need to map Xemped into the IR5*@model space.

* Normally, demped = @model- Thus, no linear mapping is required and Xembed = Xinput-

This transformation of Xiaw — Xinput Only needs to be done once during the forward pass,
regardless of the number of self-attention 1ayers.5 We consider Xinpyt to be the input for all self-
attention layers, and require the self-attention layer output to also be in the s X dp,,4e1 dimensional
space.

In the self-attention layer, Xjnpyt is projected into three feature vectors: Query (Q), Key (K), and
Value (V). Meaning, each input element has a Q, K, and V feature vector.”

* Query. Represents what we're "looking for" in the sequence. In other words, what we want

to pay attention to.
¢ Keys. Describes (a) what each element "offers", and (b) when it might be relevant.

* Values. Contains the actual information content of the element, which we will average based

on attention weights.

The Q and K matrices are projected into the same-sized dimensional space of s x d, where s
represents the sequence length (number of input tokens) and dj the attention head’s hidden di-
mension size. Normally, dy < dpodel- V can have a different size than the K and Q, but it’s usually
the same size.

Each feature space has a different learned meaning.

¢ Learned meanings. The meanings of Q, K, and V' are learned through backpropagation.

o Initially, the weight matrices for the Q, K, and V projections are randomly initialized,

making them random transformations.

=» At a high-level, a Transformer is simply predicting the next token in a given se-
quence. During training, we know what the next token should be. Thus, training
becomes a m-class prediction problem, where m represents our (token) vocab size.

=» We use cross entropy as our objective function, where we compare the predicted
next token against its ground truth.

=» The loss gradients update the weight matrices W9, WX, and WV (among other
model parameters), which are used to generate the g, k, v feature vector projections.

o The model uses the score function f,, to calculate how much a key answers a query.

* Scoring function. The score function takes a query and a key as input, and outputs the atten-

tion weight of each query-key pair.

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

o Implementation. The scaled dot-product attention (Equation 1) is the most common scor-
ing function used in Transformers. In this context, "attention" normally refers to the
"scaled dot-product attention".

T
Attention(Q, K, V) = softmax <?/I:Tk> Vv (1)

Table 1 lists the terminology for each component of the scaled dot-product attention
equation (Equation 1).

Terminology Definition
Attention Scores folz
Attention Weights softmax (%)
Attention Outputs softmax (%) %4

Table 1: Terminology for different components of the scaled dot-product attention

For a dot product to be possible, the key and query vectors must have the same dimen-
sionality. We refer to this dimensionality as dj.

= Softmax. The softmax function transforms a vector of real numbers into a probability
distribution. The output is a vector where: (a) each number is between 0 and 1, and
(b) the sum of all numbers equals 1.

=» Dot product. QKT calculates the similarity between each query-key pair. In particu-
lar, this is a matrix of dot products.

=» Scaling <\/%) We initialize our layers such that Q, K, and V have roughly equal
variance. However, the dot product over two vectors with a variance of o2 results

in a scalar with the variance of ¢* - d;.

If we don’t scale the variance back to ~ ¢2....

1. One-hot encoding weighted averages. The softmax will saturate to 1 for one ran-
dom element and 0 for all others.
2. Model doesn’t learn. The gradients through the softmax will be close to zero,

making it impossible to learn the parameters.
KEY CONCEPT 4. Attention mechanisms differ in their definitions of queries, keys, values, and
the score function.

There are various ways to visualize scaled dot-product attention. Figure 6 shows the original
visualization from the "Attention Is All You Need Paper” paper.!

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

MatMul

Figure 6: The "Attention Is All You Need" paper visualizes of the scaled dot product calculation (image
credit).

Alternatively, Jay Alammar visualizes the projection of the word embedding and subsequent

calculations as:®

wa Q

Figure 7: The Xjnput € IRS*“model represents token embeddings projected into the overall model hidden
dimension dpoqe. Using learned weight matrices W2, WK, and WY € R¥model %4k, we project Xinput into
Q,K,V € R**% (image credit).

Once we’ve computed the Q, K, and V matrices, we calculate the scaled dot-product attention:

https://arxiv.org/pdf/1706.03762
https://arxiv.org/pdf/1706.03762
https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

softmax()

v

Figure 8: We calculate the outputs of a self-attention layer (matrix Z) by using Equation 1 (image credit).

Finally, we apply a linear layer on the resulting average value features, softmax (QTIZTD V, such

that our attention layer’s output dimensions match those of the original Xinput € IR®*?medel input.

The self-attention block is not complete without a final linear layer projection into the IR®*“@mode!
space. Otherwise, we cannot add the self-attention layer inputs back into the residual stream.
(See Section 2.1.)

1.4 Multi-Head Attention

Standard scaled dot-product attention produces a single weighted average, focusing on one aspect
of the input sequence. However, language (and other sequential inputs) often has multiple aspects
that we should attend to simultaneously.

e How does each attention head work? Multi-head attention, also introduced in the "Attention
Is All You Need" paper, addresses this by processing multiple Q, K, V triplets in parallel.
Specifically, we compute h different linear projections to transform the same input embed-

dings into & sets of Q, K, and V matrices.!

KEY CONCEPT 5. Each attention head models a different relationship between input ele-
ments. Thus, the feature spaces for each set of Q, K, and V represent a different meaning.4

KEY CONCEPT 6. Multi-head attention allows us to capture different contexts across the
same sequence in parallel, which is essential for properly modeling natural language.’

Each of these sets is then used in a separate scaled dot-product attention calculation ("head").

o Aggregating results. The results of the attention heads are then concatenated along a new di-
mension (Equation 2). A neural linear layer Wy then projects the concatenated output back

to the expected input size for subsequent layers.”

Multihead(Q, K, V) = Concat (heads, ..., head;) Wp ()

o Implementation. In practice, increasing dy beyond a certain point yields diminishing re-
turns in terms of model performance. Therefore, a common approach (based on empir-
ical evidence) is to define d;, = %.

10

https://jalammar.github.io/illustrated-transformer/
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

In this case, Multihead (Q, K, V) € R°* (hxdyx) We then use W, to project Multihead(Q, K, V)

back into the final output space IR¥*@model,

* Visualizations. Vaswani et al. visualize multi-head attention as a stack of scaled dot-product
attention layers followed by this linear projection (Figure 9).1 Figure 10 visualizes the matrix

operations.?

Linear

Concat

L
Scaled Dot-Product JA N

Attention e
Ll Ll Ll
[Linear]}[Linear]}[Linear],]
A A

\ K Q

Figure 9: We visualize multi-head attention as a stack of scaled dot product calculations, since we concate-
nate each head’s results together (image credit).

1.5 Properties

The parallel and independent nature of each scaled dot-product attention calculation in multi-head

attention results in the following key properties:

1. Permutation equivariance. The scaled-dot product attention operates on a global context,*
where we compute each query-key comparison simultaneously (Equation 1). Hence, the at-
tention score does not consider token position. Meaning, the attention operation is permutation-

equivariant with respect to its input.7

Note that the softmax operation is similarly permutation-equivariant.

KEY CONCEPT 7. A function (X3, Xo, ..., Xn) = (Y1, Y2, ..., Yy) is permutation-equivariant,
if changing the order of the input equally changes the order of the output, but the values
of the outputs stay the same, i.e. f(Xp, X3, ..., X;) = (Y2, Y1, ..., Yi).

In contrast, a function f(Xi, Xy, ..., X,) = Y is permutation-invariant, if changing the
order of the input does not impact the output in any way, i.e. it stays invariant:

f(X2, X1, Xi) = f(X1,X2,..., Xn) =Y.

11

https://arxiv.org/pdf/1706.03762
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

EXAMPLE 2. Suppose that we have N people sitting in a room and they all change seats.

® Permutation invariant. We count the number of people before and after they’'ve
changed seats. Since the total count doesn’t change, counting is a permutation in-
variant operation.

* Permutation equivariant. Persons A and B swap seats, P, <+ P,. They also need to ex-
change name tags to reflect this change. Hence, name tag placement is permutation
equivariant.

e Implications. This permutation equivariance makes self-attention a global communica-
tion mechanism.* Thus, Transformers model the global context (including long-range
dependencies), increasing their Versatility.5

e Positional information. If input order is important for a task, we need to encode an ele-
ment’s position as part of its input features.” See Section 1.6 for more details.

2. Partial interpretability. Self-attention offers some intuitive insight into the model’s focus by
highlighting relationships between words. However, the attention probabilities alone do not

fully explain the model’s decisions.?

They interact with other model components to produce the final output. These interacting
factors include:

* Value vector scaling. The value vectors, which are weighted by the attention probabilities,

can have varying scales (magnitudes).

=» Implications. A high attention weight might not translate to a large contribution to
the final output if the corresponding value vector has a small magnitude.

 Sparsely activated weights. Some weight dimensions within the attention mechanism (and
other parts of the Transformer) can be sparsely activated, meaning they have little to no

influence on the model’s computations for most inputs.

=» Implications. This obscures the direct relationship between attention probabilities
and the final output.

The attention weights, softmax (QTI;;) , are only partially interpretable. Factors like the
magnitudes of V, dead attention heads; etc. also affect what the model attends to.

3. Efficiency. Unlike recurrent neural networks (RNNs), the self-attention layer runs entirely in
parallel.5 This makes Transformers much faster for shorter sequences, but less efficient for
sequences longer than the hidden dimension size.!

* One way to reduce the computational cost for long sequences is to restrict the self-
attention to a specific neighborhood of inputs (r) to attend over. This is called restricted
self-attention.

* Making the Transformer architecture more efficient is an active area of research.

12

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

(a) We maintain separate Q/K/V weight matrices € R%modet ¥4k for each head resulting in different Q/K/V matrices

€ RS <k,
X
Thinking
Machines
ATTENTION HEAD #0 ATTENTION HEAD #1
Qo Q4
Wo@ w;@
Ko Ki
WK WK
Vo V14
WV W,V

(b) We have h head calculating different scaled dot product attentions Z; € R®*“.

ATTENTION ATTENTION ATTENTION
HEAD #0 HEAD #1 HEAD #7

(c) We concatenate our separately calculated attention matrices together and project this matrix into space with the
dimensions expected by the next feed forward neural network layer.

1) Concatenate all the attention heads 2) Multiply with a weight
matrix that was trained
jointly with the model

X

3) The result would be the ~ matrix that captures information
from all the attention heads. We can send this forward to the FFNN

Figure 10: A visualization of multi-head attention matrix operations (image credit).

13

https://jalammar.github.io/illustrated-transformer/
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

If the sequence length exceeds the hidden dimension size, then self-attention becomes
more expensive than RNNs.

In the original attention paper, Vaswani et. al provided Table 2 to compare the Transformer
architecture against other popular neural architectures.

Layer Type Complexity per Layer Sequential Maximum Path Length
Operations

Self-Attention O(n?-d) o(1) 0o(1)

Recurrent O(n - d?) O(n) O(n)

Convolutional O(k-n-d?) o(1) O(logk(n))

Self-Attention (restricted) O(r-n-d) 0(1) O(n/r)

Table 2: Complexity of different popular neural architectures. For attention, n represents sequence length,
dy the attention head hidden dimension size, and r restricted neighborhood size. The most efficient archi-
tectures are highlighted in pink (table credit).

Here is what each column tells us:

(a) Complexity per Layer - The runtime complexity for each network layer

(b) Sequential Operations - How easy is it to parallelize the operations? (1) means that
everything can be parallelized (full parallelization).

(c) Maximum Path Length - Measures the number of operations needed to capture the full
global context. This represents the communication cost between core operations (e.g.,

attention vs. convolution).

While Table 2 uses n to represent sequence length, we’ll continue to using s for consistency.
If we take a closer look at the runtime complexity of each neural architecture layer:

* Self-attention. The scaled attention dot product is defined as softmax (Q—\/I}:) V. Meaning,

the main operations are:

o Matrix multiplication (QKT), which scales according (a) to the length and width
of our matrices and (b) requires "sliding" over each row and column. Hence, the
runtime complexity is cubic.
=» Generally, if matrix A has the dimensions m x n and matrix B has the dimen-
sions 1 X p, then A x B = C, where matrix C has the dimensions m x p. Thus,
the runtime complexity becomes O(m - n - p).

=» In this specific case, s is our sequence length and dy is our key/query dimension.
We multiply Q € R®*% with KT € R%>* matrix to geta n x n matrix. Meaning,
our complexity "bottleneck" is O (s? - dy).

o Scaling. Each element in the resulting s x s matrix is scaled by ,/ dlk' Since this an
element wise operation, its complexity of O(s?).

o Softmax. The softmax function is then applied row-wise to this scaled matrix. Hence,
its complexity is also O(s?).

14

https://arxiv.org/pdf/1706.03762
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

KEY CONCEPT 8. Multiplying A € m x n by B € n x p has a complexity of O(m -
n - p). This information allows us to infer a specific neural architecture’s complexity

w.r.t. a certain variable.

KEY CONCEPT 9. Self-attention scales quadratically with sequence length (O(s?)).
This is why it becomes less efficient than vanilla RNNs when the sequence length n
exceeds the embedding/hidden dimension size dj.

* Restricted attention. If we limit the attention mechanism for each token to a neighborhood
of r tokens, the complexity becomes O(r - s - d), where key length is limited to r.

* Linear Attention. Linear attention is a simplified version of attention that removes the
softmax. Since only matmuls are left, it is essentially a linear function, which one can

reformulate in a recurrent form.

=» This makes it more efficient during inference. In particular, linear attention reduces
the quadratic runtime complexity to linear time (over sequence length).

=» Unfortunately, linear attention has shown lower performance than the original at-
tention mechanism. Thus, it’s only used in cases where s >> d; and model perfor-
mance isn’t critical.

KEY CONCEPT 10. Linear self-attention is used in applications where (a) model ac-
curacy isn’t critical and (b) input sequence length often exceeds dy.

* RNNs. For a vanilla RNN, the complexity is a function of the input sequence length s
and the hidden state size d%. The runtime complexity is O(s - d?).

=» Note that modern RNNs (e.g. Mamba/xLSTM) use variants with potentially differ-
ent complexities, but remain linear in sequence length.

* Convolutional neural networks. Complexity is a function of the convolution kernel size
k, the number of pixels p, the number of input channels d;,, and the number of output
channels d,,;. In many cases, d;;, = dout, and we can simplify to O (k- n - dz).

The permutation equivariance and efficiency (when s < dj) of Transformers lead to several key
paradigm shifts in machine learning (Table 3).

15

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

Paradigm

Before Attention

After Attention

Processing

Sequential processing. RNNs process data se-
quentially (one step at a time). This makes them
slow and difficult to parallelize, especially for
long sequences.

Parallel processing. The underlying attention
mechanism processes all elements of a sequence
simultaneously. This results in faster inference
times and better retrieval capabilities in longer
sequences.

Context Scope

Local context. In Computer Vision, convolu-
tional neural networks captured local patterns
in data through convolutional filters. For NLP,
RNNSs captured some long-range dependencies,

but struggled with very long sequences.

Global context. The attention mechanism mod-
els dependencies across all parts of an input se-
quence parts, regardless of distance.

Driven by...

Feature engineering. Traditional NLP often re-
lies on manual feature engineering to represent
words in a way that models could understand.

Data. Transformers learn rich representations di-
rectly from raw data, which reduces the need for

manual feature engineering.

Generalizability

Task-specific models. Many Al models were de-
signed for specific tasks, where different archi-
tectures were used for different applications.

Foundation models. The ability of Transform-
ers to learn from massive datasets has led to the
emergence of "foundation models" that are fine-
tuned for a wide range of downstream tasks.

Table 3: Paradigm shifts introduced by the attention mechanism.

1.6 Positional Encodings

Because attention is permutation-equivariant, it processes input elements as a set. Meaning, the
model has no inherent understanding of word position. Therefore, to effectively process sequential
data, we must explicitly provide positional information to the model.”

The Transformer architecture achieves this through positional encodings, which are added to
the input embeddings. These encodings are designed to provide a unique representation for each
position in the sequence, allowing the model to distinguish between different word orderings.®

Vaswani et al. proposed using sinusoidal functions of different frequencies for these encod-
ings:!
pE sin(Mf%) ifi mod2=0

(pos,i) pos

cos (m

)

) otherwise

, where pos is the position in the input sequence, i is the dimension of the embedding vector,
and dpger is the dimensionality of the embeddings.

KEY CONCEPT 11. The positional encoding matrix PE is added element-wise to the embedding
matrix X. Thus, each row Xj (a token’s embedding) becomes X; + PE;.
The intuition is as follows behind Equation 3:

» Varying frequencies encode relative position. Sine and cosine functions are periodic. By using
different frequencies (controlled by i and dpo4e1), the encodings generate unique patterns for
different positions. This allows the model to learn relative positions within the sequence.

e Fven vs. odd dimensions. Sine is used for even dimensions (i is even), and cosine is used for
odd dimensions (i is odd). This provides a distinct representation for each dimension.

16

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

e Geometric progression of wavelengths. The use of 100007/ @model creates a geometric progression
of wavelengths. This means that wavelengths becomes increasingly "stretched out" across at
higher levels of dy,og4c1, allowing the model to easily learn relationships between positions at
different distances.

Putting all of this together, we want to have an unique sine/cosine wave for each dimensions
where we slowly stretch out the wavelength (Figure 11).7

Encoding in hidden dimension 1 Encoding in hidden dimension 2

(o)} [)]
5 1 £ 1 o °
3 g N) o—°
2] (o) \ /
S S \ o / °
T 0 5 0 " Q o
e 5] d \
b= = \ i o
21 3 -1 o o0
& g
1 2 3 45 6 7 8 9 101112 13 14 15 16 1 2 3 45 6 7 8 9 1011 12 13 14 15 16
Position in sequence Position in sequence
o Encoding in hidden dimension 3 o Encoding in hidden dimension 4
3 1 5 1
o o
o o
G]
— 0 - 0
@© ©
e C
o o
- -
o -1 o —1
& g
1 2 3 45 6 7 8 9 101112 13 14 15 16 1 2 3 45 6 7 8 9 1011 12 13 14 15 16
Position in sequence Position in sequence

Figure 11: The patterns between the hidden dimension 1 and 2 only differ in the starting angle. The wave-
length is 277, hence the repetition after position 6. The hidden dimensions 2 and 3 have about twice the
wavelength (image credit).

EXAMPLE 3. Suppose that our embedding size is 512. Then, we have 212 = 256 frequencies, since

we use 256 unique sine and 256 unique cosine waves. Hence, we have 512 distinct positional
encodings.

KEY CONCEPT 12. Since Transformers are permutation-equivariant, they require explicit posi-
tional information to understand word order. Positional encodings provide this crucial infor-

mation, and are used during both training and inference.

Figure 12 visualizes the matrix math required to add positional encodings into our transformer
layer input.®

17

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

(a) We calculate a PE matrix with the dimensions s X dy,o4e1 using Equation 3, where s represents the sequence length
and d;;,04e1 the overall model hidden dimension size.

(")
When you play game of thrones
5 17 7 12 15 19
| pl p2 p3 pd p5 p6 Positional
0 0 | 0.8415 | 09093 | 0.1411 | -0.7568 | -0.9589 —I 5= QO —
1 1 0.0464 0.9957 0.1388 | 0.1846 | 0.9732
2 0 0.0022 0.0043 0.0065 | 0.0086 | 0.0108
3 1 0.0001 1 0.0003 | 0.0004 1
4 0 0 0 0 0 0
5 1 0 1 0 0 i
d (dim) 6 6 6 6 6 6
S POS 0 1 2 3 4 5)

(b) We add matrix PE to our embedding matrix Xinput € [RS*model, Then, we feed the resulting matrix into our Trans-
former blocks.

-
[when [you | play | game | of [thrones | e
s | 17 | 7 | 12 | 15 | 19 Encoding e
e : 3 Input
Position Embedding Matrix
pl p2 p3 pd p5 6
0 0.8415 0.9093 0.1411 | -0.7568 | -0.9589
1| 00464 | 09957 | 0.1388 | 0.1846 | 0.9732 Inputs
0 0.0022 0.0043 0.0065 | 0.0086 0.0108
1 0.0001 1 0.0003 | 0.0004 1 epl ep2 ep3 epd ep5 epb
0 0 . 0 2 9 0.79 1.22 0.92 0.26 012 | -0.36
1 0] 0 0 1
1.6 0.17 1.51 0.74 0.59 1.3
+ - 0.96 0.06 0.27 0.66 0.8 0.76
Word Embedding Matrix 1.64 0.79 1.31 0.22 0.62 1.48
el e2 e3 ed e5 e6
070 0iss T 0 0788 06 0.97 0.9 0.56 0.07 0.5 0.94
0.6 0.12 0.51 0.6 0.41 0.33 12 0.74 1.59 0.37 0.7 1.21
09 | 006 | 027 | 065 | 079 | 075
0.64 0.79 0.31 0.22 0.62 0.48
097 0.9 056 | 0.07 0.5 0.94
0.2 0.74 0.59 0.37 0.7 0.21
A8

Figure 12: A visualization of computing an input sequence’s positional encodings (image credit).

2. TRANSFORMER ARCHITECTURES

2.1 Decoder Only Transformers

The Transformer architecture (introduced in the "All You Need is Attention") paper was an encoder-
decoder Transformer.! However, OpenAl switched to a decoder-only architecture for GPT-1.8 This
architecture shift allowed OpenAl to train GPT-1 on even more data, leading to significant perfor-
mance gains.

* Benefits. The decoder-only Transformer architecture is easier to train and more versatile.

1. Simplicity. In the decoder-only architecture, we remove the entire stack of encoder
blocks without modifying the Transformer’s core functionality (predicting the next to-
ken in a sequence). This simplifies our architecture, and makes it easier to work with.

18

https://levelup.gitconnected.com/understanding-transformers-from-start-to-end-a-step-by-step-math-example-16d4e64e6eb1
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

2. Easier to train. The encoder-decoder Transformer architecture requires expected input-
output pairs during training. This drastically reduces the data that could be used to
train GPT-1. In contrast, the decoder-only architecture can be trained on any sequential
data.

3. Efficiency. The decoder-only Transformer uses masked attention, where you calculate
only half the attention matrix. Thus, we do less calculations to get the same results,
making the decoder-only architecture more efficient.

4. Versatility. A decoder-only Transformer trained a large dataset (a "chunk of Internet")
can perform the same tasks as an encoder-decoder Transformer and other tasks.

The decoder-only architecture consists of an input layer, a stack of decoder blocks (Figure 13),
and an output layer. The input layer maps the input tokens to embeddings and adds in positional
encodings (see Section 1.6).”

6 [DECODER BLOCK J
a * N
2 [DECODER BLOCK J
2> Transformer-Decoder DECODER BLOCK
] (Feed Forward Neural Network]
) | ’ (Masked Self-Attention)
<s> robot must obey *
1 2 3 4 4000

Figure 13: The decoder-only Transformer architecture. All decoder blocks are identical and now use masked
self-attention, which increases the number of tokens that a model can handle (image credit).

Each decoder block consists of masked a self-attention layer with residual connection, and a
feed forward layer with another residual connection.

® Masked self-attention. Masked self-attention ensures "causal” processing, where a token can
only look at past tokens but not future ones. This prevents the model from cheating in its
next-token prediction task.”> Figures 14 and 15 visualizes the difference between masked-
and self-attention.”

19

https://jalammar.github.io/illustrated-gpt2/
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

Self-Attention Masked Self-Attention

1D I

Figure 14: The context captured by self-attention vs. masked self-attention (image credit).

Features Labels
position: 1 2 3 4
Example:
1 robot must obey orders must
2 robot must obey orders obey
3 robot must obey orders orders
robot must obey orders <eos>

Figure 15: Masked-attention requires less calculations than regular self-attention, which allows the model
to handle more tokens (image credit).

e Feed forward layer. The decoder’s block feed forward layer is a two-layer multi-layer percep-
tron (MLP) with hidden activation functions (e.g., ReLU), which scales in breadth (hidden

size) rather than depth, optimizing computational efficiency.

It serves two main purposes:

1. Introduce non-linearities. The hidden activation function introduces non-linearities into
the model, enhancing its ability to represent complex patterns in data.!

2. Context aggregation. The feedforward layer processes and transforms the contextualized

token representations produced by the self-attention mechanism.*

=» The MLP usually has a larger hidden dimension than the self-attention layer (dyode1)-
This allows the MLP to "inspect” the attention information in a higher-dimensional
space.

=» This "inspection” allows the model to combine and connect learned inter-token de-

pendencies from the self-attention layer into more complex patterns.

* Layer normalization. Afterwards, we apply layer normalization. Originally, normalization
was done after the residual connections, but this can lead to very high gradients during the

first iterations, making training unstable.” Pre-layer normalization solves this issue.!!

o Why? This effect happens as a result of the normalization layer’s interaction with the
residual stream. (A residual stream is a series of continual residual connections that
runs throughout the Transformer.)

o Post-layer normalization. We normalize outside of the decoder blocks by adding nor-
malization layers on top of the residual stream. This distorts the gradient signal by

continually scaling it.

20

https://jalammar.github.io/illustrated-gpt2/
https://jalammar.github.io/illustrated-gpt2/
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

=» We initialize our Transformer weights uniformly. Thus this scaling distortion re-
sults in later neural layers have larger gradients than earlier ones during the first
iterations (Figure 16).

=» This results makes training unstable initially, but as the model learns it stabilizes.
Thus, this effect diminishes.

A

gradient
norm

k3

P el
e 5

layers

Figure 16: During the first iterations, post-layer normalization and uniform weight initialization result in
higher gradient magnitudes for later layers.

o Pre-layer normalization. The normalization layer becomes a part of the decoder block.
As a result, each attention/feed forward layer still only see normalized feature inputs.
However, the normalization layer no longer directly interacts with the residual stream.

Figure 17 visualizes how the normalization layer interacts with the residual stream
based on its placement.!!

X141 X141
Layer Norm addition

A

I 5

addition
y

/

Layer Norm | addition !
b

addition Multi-Head
Attention

Multi-Head f

1
X] X1

(a) (b)

-

-

~—IHi

Figure 17: Post-layer normalization (a) vs. pre-layer normalization (b). The gray column represents the
residual stream (image credit).

We repeat this decoder block N times.? Finally, we have our output head. A single linear layer

21

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial15/Vision_Transformer.html
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

maps the last decoder block’s output to our vocabulary size, which we then apply a softmax over
to predict the next token.*

In practice, we don’t implement the softmax in the output layer during training, since this
interferes with the cross entropy loss. Rather, we apply the softmax function over the model
output at inference time.

2.2 Encoder-Decoder Transformers

Thus far, we’ve focused on decoder-only Transformers, since the are the modern implementation
of the Transformer architecture. However, the original Transformer architecture was actually an

encoder-decoder Transformer.!

(a) The original Transformer architecture was a stack of encoder blocks followed by a stack of decoder blocks.

OUTPUT[I am a student]

: N
DECODER
3
DECODER
3
DECODER
3
DECODER
3
DECODER

ENCODER
3
ENCODER
2
ENCODER
3
ENCODER
)
ENCODER
[y)y
ENCODER DECODER

f v,

INPUT | Je suis étudiant

v

—

(M A O O
./

YN MO
___/

(b) The contents of each encoder and decoder block.

DECODER 1
a)
Feed Forward
ENCODER _ Y,
1 4
()
Feed Forward Encoder-Decoder Attention
= \ 5 J
4 N
Self-Attention Self-Attention
7y - .
T

t

Figure 18: The original encoder-decoder Transformer architecture (image credit).

The landmark "Attention Is All You Need" paper introduced the architecture shown in Fig-

22

https://jalammar.github.io/illustrated-transformer/
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

Encadec Decodec

NG ~
L& & Gapd
Figure 19: In encoder-decoder attention, we attend to the key-value pairs from the encoder block.

ure 18.° The feed-forward layer and self-attention layers are the same those in the decoder-only
Transformer. In the encoder-decoder attention layer, we use key-values from the encoder block
and do not mask the attention scores QTI;Z. Queries originate the decoder block (Figure 19).° This
process is also called cross attention.

2.2.1 Limitations

As mentioned in Section 2.1, the encoder-decoder architecture requires a set of input and expected
output sequences (i.e., "labels"). This greatly limits the amount of data we can train on, and limits
the applications for the encoder-decoder architecture.

At the same time, the encoder-decoder Transformer is more computationally expensive than

its decoder-only counterpart, because:®

1. The encoder blocks introduce more computations

2. The encoder-decoder attention mechanism does not use causal masking. Meaning, we per-
QK™

form double the calculations for the attention scores i

KEY CONCEPT 13. Unless stated otherwise, the term "Transformers" usually refers to a decoder-
only Transformer.

3. FOUNDATION MODEL LIFECYCLE

NVIDIA’s NeMo Framework provides a good overview of the foundation model lifecycle (Fig-
ure 20). At a high level, we can think of the foundation model lifecycle in the following steps:'2

1. Data Curation. We build and version large-scale data pipelines to obtain our pre-training
dataset. See Section 3.1.

2. Training. We can break training down into two general stages:

(a) Pre-training. We train the model on a "large chunk of internet" so that it can predict the
next token in a sequence.

23

https://docs.nvidia.com/nemo-framework/user-guide/latest/overview.html
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

(b) Post-training. The model is trained to "behave" in a certain way, which consists of (a)
supervised fine-tuning and (b) model alignment.

Section 3.2 covers general tactics for training very deep neural networks, while Section 3.3
covers the specific process of training Transformer models.

3. Fine-tuning (optional). After training our foundation model to perform general tasks, we may
want to fine-tune it for a specific application. In Figure 20, we can think of this as the "cus-

tomization" step. See Section 6 for fine-tuning optimizations.

4. Inference. We serve our trained foundation model either on an edge device or in a data center.
For smaller edge devices, we may need to embed the foundation model so that it can function

effectively (without incurring memory errors).

Section 3.4 covers the basics of inference, while Section 5 covers its optimizations.

Deployment

Data with NeMo.
Curation Training Alignment NVIDIA NIM Guardrails
Programmable
A:;Z';’:::d guardrails for
micmservi;;s m;‘i:a‘l‘gz'n 4

TensorRT-LLM Y

A

Figure 20: The LLM lifecycle supported by Nvidia’s NeMo foundation model framework. Training steps
shown in green and inference in gray (image credit)

Finally, since by nature, foundation models are large-scale models. Thus, Section 3.5.1 provides a
high-level overview of the parallelization strategies required to make foundation model training
and deployment possible.

3.1 Data Curation

Foundation models achieve broad generalizability by training on massive datasets. These corre-
sponding data pipelines need to efficiently load data from data centers around the world.
A pre-training data pipeline must handle the following tasks:

1. Text extraction. We gather our initial data source by crawling as much of the Internet as
possible. Meaning, we performing large-scale web-scrapping. Thus, we need to undergo the
normal processes for extracting relevant data (text) from raw HTML code.

2. Filtering sources. Most websites are low quality data sources that are not useful for modeling
training. Thus, we need to filter these sources out.

3. De-duplication. Typically, the same website has multiple links to the same page. Thus, we
need to filter out data duplicates.

24

https://docs.nvidia.com/nemo-framework/user-guide/latest/overview.html
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

4. Controlled mixing. We want have fine-grained control over the composition of the final pre-
training dataset. Thus, we need to be able to define the percent of each data source in the

final dataset.

EXAMPLE 4. If we're training a text-vision foundation model, then we have a mix of im-
age and text data sources. We want to balance our pre-training dataset composition so
that both modalities are reasonably balanced. Thus, we need a way to configure the pre-
training data pipeline so that the final dataset contains X% image data and Y% text data.

5. Decontamination. Since our pre-training dataset contains as much of the available data on the

internet as possible, we need remove our evaluation datasets (benchmarks) from it.

Every time we change our data pipeline, we are generating a new training dataset version.
Thus, we need to version our data pipelines (and datasets) so that we can keep track of our changes.

3.2 Training Deep Networks

Transformers are very deep neural networks. Meaning, like any other deep neural network, they
are prone to overfitting and have a complex loss space.

1. Optimization challenges. Like many very deep layers, Transformers are sensitive to hyper-
parameters, especially the learning rate, and are susceptible to unstable gradients.

e Why? Transformers lack recurrent processing and have a complex optimization land-

scape.

(a) Lack of recurrent processing. Unlike RNNs, Transformers process all input tokens
simultaneously. Meaning, they lack an inherent processing of previous steps to
guide the learning process.
=» Implications. Each layer receives the full input sequence at once. Therefore, the

model’s initial state is extremely influential. A poor initialization can easily
trap the model in a suboptimal region of the loss landscape, making recovery
difficult.

(b) Complex optimization landscapes. Transformers are often very deep. Meaning, the
non-linearities from the attention mechanism and the numerous cross-layer inter-
actions create a highly complex optimization landscape.

=» Implications. Small changes in hyperparameters, especially the learning rate, can
have a significant impact on the training dynamics and final performance.

¢ Solutions. We use learning rate warm-up when training Transformers alongside the
Adam optimizer to better navigate the optimization landscape.”

o Intuition. We gradually increase the learning rate from 0 to the target learning rate
during the initial training iterations.

=» This allows the model to explore the loss space slowly at first, preventing large,
potentially destabilizing jumps early on.

=» As training progresses and the model approaches a solution, the learning rate
decreases, enabling finer adjustments.

25

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

o Why isn’t Adam enough? This is an area of active research. Here are the two most

common explanations:”

(a) The bias correction factors within Adam can lead to a higher variance in the
adaptive learning rate during the first iterations. This results in large gradi-
ents during the first iteration, introducing a risk of our model getting stuck in a
suboptimal place in the loss function space.

(b) The iterative application of post-layer normalization across the different trans-
former blocks also cause very high gradients during the first iterations.!! Sec-

tion 2.1 explains how pre-layer normalization solves this.

o Alternatives to learning rate warm up. Improved optimizers like RAdam overcome
this issue, but warm-up is such a simple and effective solution that most applica-
tions/papers just use the original Adam implementation with learning rate warm-
up.

o Implementation. The original "Attention Is All You Need" paper used an exponential
decay schedule, but the most popular scheduler is the cosine warm-up scheduler
(Figure 21).” Tt combines warm-up with a cosine-shaped learning rate decay.

=» We often combine learning rate weight warm up with weight decay, which
keeps our learned weights closer to zero. This causes each gradient update
to have a larger relative impact and speeds up the training process.

Learning rate factor
o N o o =
N B » o o

o
o

0 250 500 750 1000 1250 1500 1750 2000
Iterations (in batches)

Figure 21: The cosine warm-up learning rate scheduler modulates the learning rate (image credit).

While learning rate scheduling is used in other models, the warm-up phase is

particularly crucial for Transformers.

2. Regularization. Transformers are especially prone to overfitting.

e Why? Transformers, especially large ones, have a very high capacity due to the numer-
ous parameters in the attention mechanism and feed-forward networks.
* Solutions. There are two possible solutions:
(a) Dropout. Dropout is highly effective within the attention layers and feed-forward
networks of Transformers, helping to regularize these high-capacity components.
(b) Label smoothing. In standard classification tasks, we typically use "hard" targets (p =
1.0 for one class). Label smoothing replaces these hard targets with "soft" targets.

26

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

o How? We use a loss function that supports learning multiple targets.

EXAMPLE 5. Instead of assigning a probability of 1 to the correct class, it assigns
a slightly lower probability (e.g., 0.9) and distributes the remaining probability
mass (e.g., 0.1) evenly across all other classes.

Label smoothing (a) helps prevent overconfidence and (b) reduces sensitivity to

noisy labels.

3. Memory bottlenecks. Very deep networks suffer from memory bottlenecks.

e Why? During the forward pass, we need to store each layer’s computed activations in
memory for the subsequent backward pass. Otherwise, we can’t calculate the gradients.
The deeper the network, the more layers, incurring higher memory costs.

¢ Solutions. We use activation checkpointing. Rather than storing all activations, we only
stores activations from a selected subset of layers (the checkpoints). When the backward
pass needs the activations of a non-checkpointed layer, they are recomputed on the fly.

o We extend computation time to decrease GPU memory consumption.

o There are various methods for selecting which activation layer computations to

save.

In addition to the general challenges of very deep neural networks, Transformers also scale
poorly. More specifically, they become computationally expensive and memory-intensive for long

sequences. Existing solutions include:

1. Gradient accumulation. We simulate larger batch sizes when memory constraints prevent us

from using them directly.

e How? We let gradients accumulate over several forward passes before performing back

propagation.

EXAMPLE 6. Let’s say you want to use a batch size of 64, but your GPU memory can
only handle a batch size of 16. You would divide your desired batch size (64) by your
maximum feasible batch size (16), which gives you 4 accumulation steps.

=» We don’t update the weights after each batch of 16. Instead, we perform a for-
ward and backward pass for 4 mini-batches of 16. During each backward pass,
we accumulate the gradients across each mini-batch by either summing or av-

eraging them.
=» After accumulating the gradients for all 4 mini-batches, we finally perform a
single weight update using the accumulated gradients.
e Implications. This helps if large batch sizes don't fit into your memory, but it doesn’t

solve the core quadratic complexity problem.

2. Mixed-precision training. Mixed-precision training involves using different numerical pre-
cisions (usually lower precision like FP16 or BF16) for certain parts of the neural network
training process while keeping other parts in higher precision (FP32).

27

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

e Implications. Using lower-precision can help with memory, but doesn’t address the com-
putational bottleneck.

3. Attention mechanisms variants. We choose a slightly different Transformer architecture, where
the attention mechanism is less complex. This directly solves the quadratic complexity of
standard attention.

KEY CONCEPT 14. Transformers suffer from the same challenges as other very deep neural
networks, but also from the scaling limitations of the self-attention mechanism.

3.3 Training Transformers

A commonly raised intuition is to see a Transformer as a lossy compression of a "chunk of inter-
net", where our output is a "zip file" of model parameters. Due to how much information we’re
tightly compressing, we are not reproducing our training data but rather capturing its high level

information.!3

Practically speaking, Transformer model training consists of two phases. In the pre-training
phase, the model learns to predict the next token in a sequence. In the subsequent post-training
phase, the model learns how to understand and follow user instructions.

3.3.1 Pre-Training

We initially train our model to perform next token prediction using a large "chunk of internet".

¢ How? The decoder-only transformer is trained to predict the next token using cross entropy
loss. This technique is called teacher forcing, where we always input the "ground truth"
tokens and just train transformer to replicate these tokens as outputs.'4

o Optimization techniques. We use the standard Adam optimizer combined with learning

5

rate warm-up and (usually) weight decay.” Alternative optimizers like Muon!® and

Shampoo! are also being explored.

o Not many epochs. In practice, we don’t train a Transformers over multiple epochs on the

same data (due to the sheer volume of training data).!*

The gradient stabilization and memory reduction techniques discussed for Transformer in
general Section 3.2 still apply.

- DEFINITION 2 B
Teacher forcing is a training technique for sequence models. During training, we use the
ground truth output from the previous time step as input to the current step instead of
the model’s prediction, helping the model learn faster.

¢ Input. An untrained Transformer model, where (a) the model weights are randomly initial-
ized and (b) a large "chunk of internet" is used as the training dataset.

* Output. A Transformer that behaves like an auto-complete algorithm, where it predicts the
next token in a given sequence.

28

https://kellerjordan.github.io/posts/muon/
https://proceedings.mlr.press/v80/gupta18a/gupta18a.pdf
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

o Why isn't this enough? Most of Transformer applications required the model to act more
like a helpful assistant rather than a fancy auto-complete algorithm.

3.3.2 Post-Training

We convert the pre-trained Transformer from an auto-complete tool into a chatbot assistant. This
process occurs in two steps:!’

1. Supervised fine tuning (SFT). SFT is a broader post-training category, but instruction tuning
is one of its key components.

* What is it? We perform supervised fine-tuning of the pre-trained Transformer using
either: (a) datasets of instruction-response pairs, or (b) conversation data.

* Implementation. We only fine-tune the model parameters of the next token prediction of
the response — not the user instructions. i.e., We selectively fine-tune.

o Input. We start with (1) a pre-trained Transformer model, and (2) conversation data.
This dataset is much smaller in size than pre-training dataset, but its quality matters

more.

o Output. A chatbot-like Transformer that responds to user questions and queries,
simulating human-like behavior.

2. Reinforcement Learning from Human Feedback (RLHF). We push the supervised fine-
tuned Transformer to generate more responses like those favored by humans. This process is
also called model alignment.

o Implementation. Our model generates several responses per instruction, and secondary
LLM simulates human preference.

o Input. We have a (1) supervised fine-tuned Transformer and (2) a dataset of instruc-
tions.

o Reinforcement learning. For each instruction in our dataset, the model generates mul-
tiple candidates responses.

=» Asecond LLM predicts which candidate response a human would find the most

favorable.

=» Using RL policy optimization, we guide the Transformer towards generating
more favorable responses. i.e., We weigh everything by the predicted reward.

o Output. A Transformer that generates more human-favored responses.

o Alternatives. Direct Preference Optimization (DPO) is an alternative to RLHF. We apply
the same process, but maximize the likelihood of generating the preferred response

KEY CONCEPT 15. DPO and RLHRF share the same idea, but achieve model alignment
using different objective functions.

We can also extend the post-training process to create a reasoning/thinking model.!®

29

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

¢ Implementation. We encourage the Transformer to generate a series of reasoning steps before
arriving at the final answer. By simulating step-by-step thinking, the Transformer is more
likely to correctly solve complex reasoning problems.

* QOutput. A Transformer that can now self-criticize and correct its own mistakes. This allows
the Transformer to better solve complex reasoning tasks.

3.4 Inference

In contrast to training, the decoder-only transformer now has the task of generating the next token
in a sequence. We autoregressively feed the last sampled tokens back into the decoder-only trans-
former until the model generates a "stop" token (or we reach our maximum sequence length).1

* Sampling the output distribution. The output head generates a probability distribution of what
token is most likely to come next. There are different sampling strategies that we can use to
select the next token.

o Beyond greedy sampling, where we just select the most likely token, we can use tem-
perature T to favor the most likely tokens while allowing for some randomness (Equa-
tion 4).

=» When T = 1, the softmax behaves normally. The more we increase T, the more
evenly distributed our token probability distribution becomes.

=» Even if T = 1, the Transformer will not reproduce the exact training data. We can
think of model training as a lossy compression of the original dataset.

exp (z;/T)
yexp (z/T)

o Of course, there are also other more sophisticated sampling techniques.

P = 4)

¢ Implementation. In PyTorch, we typically define inference behavior in the generate method
of our Transformer class definition.

* Prompt sensitivity. The input prompt matters, since certain user prompts will generate more
desirable model outputs.

o Optimizations. In prompt tuning, we optimize our input prompt to guide the LLM to-
wards the desired output without changing the model’s internal weights. i.e., We "learn”
the best instructions to give our fully trained LLM.

E Prompt tuning is not a fine-tuning task. %

3.4.1 Retrieval Augmented Generation (RAG)

Retrieval augmented generation (RAG) combines classical information retrieval techniques with
LLM inference. At a high-level, RAG consists of two simple steps:

30

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

1. Standard information retrieval. We retrieve relevant information from a database or knowledge
base (e.g., news articles, Google search results; etc.) using a standard information retrieval
algorithm. Normally, we only feed the top 3-5 most relevant documents into the LLM.

2. Augment the prompt. We then append the retrieved information to the user’s prompt, struc-
turing it to explicitly ask the LLM to consider these sources when responding.

® Result. This allows the Transformer to generate more accurate, up-to-date and contex-

tually relevant responses. It also minimizes the risk of hallucinations.

EXAMPLE 7. Google’s Gemini models use RAG to generate responses with source citations.

3.5 Working at Scale

Transformers are large models trained on massive amounts of data. Thus, we need to write highly
scalable code for each stage of the Transformer life cycle. This involves model sharding (Sec-
tion 3.5.1) and hardware-specific optimizations (Section 3.5.2).

3.5.1 Parallelization Strategies

At some point, our model becomes too large to fit on a single GPU. Thus, we have to shard our

model across multiple devices both for training and inference. We can break parallelization down

into these general categories:2

1. Data parallelism. Once our batch size is too large to fit on a single GPU, we need to divide
it into smaller batches across multiple devices.

2. Model parallelism. We distribute a large model across multiple devices by using:

(a) Pipeline parallelism. We split the model by its neural layers.
¢ How? If a model has N layers and we have M GPUs, we send N /M layers to each
GPU. We then communicate each layer block’s outputs across our GPUs.
* Pros. Benefits include:

(+) Less communication overhead than tensor parallelism, since we only commu-
nicate after each layer block.

(+) More flexibility in compute selection. Lower communication costs means that
we can also work with lower communication bandwidth GPUs (e.g., GPUs
across different nodes).

¢ Cons. Drawbacks are:
(-) This approach only works if each model layer can fit on an entire GPU.

(-) Pipeline parallelism is prone to pipeline bubbles, where some GPUs remain
idle while others are still running in a given batch.

EXAMPLE 8. GPU 2 can only start once GPU 1 is done with a part of the batch.

(b) Tensor parallelism. We split the model across its feature dimensions.

31

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

¢ How? Suppose that each model layer has a hidden dimension size of m; 4 n;, where
m; € M,n; € N. Then all m; values go to GPU 1, and all n; values to GPU 2.

e Pros. Benefits include:
(+) We no longer are required to fit an entire neural layer on a single GPU.

(+) Tensor parallelism can be made very efficient for specific model layers.

EXAMPLE 9. In Transformers, the attention layer can be parallelized over its
multiple heads. Thus, each GPU processes a different set of attention heads.

® Cons. The additional communication costs restrict our compute setup. i.e.,
(-) More communication overhead than pipeline parallelism

(-) To offset these communication costs, we try to implement tensor parallelism
within the same node of GPUs.

3. 2D Parallelism. We combine a form of model parallelism with data parallelism. More specif-
ically, we organize our GPUs into a grid with that number of dimensions. We use data par-
allelism across GPUs with slowest communication, and tensor parallelism across GPUs with
the fastest communication.

4. 3D Parallelism. We combine data parallelism, pipeline parallelism, and tensor parallelism
strategies. This is only done when training prohibitively large models.

Figure 22 summarizes these different parallelization strategies.

Single GPU Data Parallelism Tensor Parallelism Pipeline Parallelism
GPU 3
Ko) o © © o GPU 2
g g kS B 3 Model Model
> = = = =
GPU O
Batch u u N u u
ize 8) o - " . E wE wE o m
GPUO GPU O GPU2 GPU3 GPUO GPU2 GPU3

Figure 22: Different parallelization strategies (image credit)

Typically, we tend to implement parallelization strategies in a specific order. First, we start
development with just a single GPU. In the next stage, we use data parallelism. Then, if needed,
we combine data parallelism with either tensor or pipeline parallelism (2D) parallelism. Finally,
for very big models, we combine all the parallelism strategies in 3D parallelism.

3.5.2 Kernel Development

A kernel is an optimization computation graph for the specific hardware that a software is run-
ning on. In foundation model development, we want to ensure that our codebase supports kernel
implementation. Typically, this involves using a kernel development framework like Triton.

32

https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/scaling/JAX/overview.html
https://triton-lang.org/main/index.html
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

4, MODEL COMPRESSION

4.1 Quantization

Quantization refers to the process of mapping continuous or high-precision values (typically

floating-point numbers) to a discrete set of lower-precision values (often integers). In machine

learning, we typically quantize a model’s weights and activation to reduce its computational foot-

print.2!

e Why? Large language models consists of billions of parameters. Thus, the effects of com-
pressing a single parameter compound to significant memory costs.??

o Less memory. Quantization reduces a model’s RAM consumption, making it possible to
deploy models on hardware-constrained environments (e.g., edge devices).

o Faster computations. Integer operations are generally faster than floating-point opera-
tions, particularly on hardware accelerators. Thus quantizing floating points to integers
can lead to significant speedups.

=» The degree of speedup is hardware-specific.

=» Some hardware are floating-point optimized. Meaning, the speedup of integer op-
erations may not be that pronounced.

o Energy consumption. Memory-savings and less computationally intensive operations re-
sult in lower power usage. Lower precision also reduces the data movement overhead,

which further lowers energy bills.

EXAMPLE 10. Quantizing a 32-bit floating-point model to an 8-bit integer model can sig-
nificantly reduce memory usage (e.g., 4x less memory). For large language models with
billions of parameters, this savings effect is huge.

* Important terms. Here are some commonly used terms.

o Numerical precision. The number of bits used to represent numbers (e.g., 32-bit floating
point, 8-bit integers).

o Dynamic range. The range of values a number can represent.

¢ Trade-offs. Lower precision models consume less resources, but can become less accurate.
Sources of quantization error include precision loss, clipping, and rounding errors.

o In clipping, quantization maps values outside the representable range to the nearest
boundary (e.g., the lowest or highest representable value).

o We can mitigate these errors source with quantization-aware training, scaling factors to

minimize errors, and using mixed-precision techniques.

There are two main types of Quantization methods:??

1. Post-Training Quantization (PTQ). We apply quantization to after a model has been trained.

33

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

* Pros. Simple to implement and doesn’t require any training

¢ Cons. Can degrade model performance, especially for sensitive tasks

2. Quantization-Aware Training (QAT). We simulate the effects of quantization during train-

ing. This allows the model to adapt to a lower-precision environment and better maintain its

accuracy.

* Pros. Retains higher model accuracy when compared to post-training quantization

¢ Cons. Requires retraining the model, which can be computationally expensive

EXAMPLE 11. In the gradient-based quantization technique, we use the gradients of the
loss function to infer the importance of weights. We quantize more important weights less

aggressively than others, which better preserves model accuracy.

Some popular quantization techniques can be implemented as either as a post-training quantiza-
tion or quantization-aware training method, while others only belong to specific category.>

1. Uniform quantization. Values are evenly divided into fixed intervals across a range. This

makes it simple and efficient, as each step is of equal size.

* Applications. Situations where the distribution of data is relatively even or predictable.

¢ Category. Post-training quantization or quantization-aware training

EXAMPLE 12. We map floating-point values, originally in the range of [—1,1], to 8-bit inte-

gers.

2. Non-uniform quantization. Values are divided based on their distribution, with smaller steps

where higher precision is needed and larger steps elsewhere

¢ How? We use the distribution of weight values to select an appropriate non-linear map-
pings (e.g., logarithmic).

* Applications. Done when the distribution of values is highly skewed or non-linear.
Hence, we allocate more precision to the values clustered in a "densely populated”
range.

¢ Category. Post-Training Quantization or Quantization-Aware Training

KEY CONCEPT 16. Uniform and non-uniform quantization differ in the distribution of

the mapped model weights/activations.

3. Dynamic Quantization. Quantization parameters (e.g., scale and precision type) are deter-
mined dynamically during inference, allowing flexibility but introducing runtime overhead.

* How? We convert weights to lower precision, and dynamically computes activation

quantization during inference.

* Applications. Suitable for NLP models and use cases where activations vary widely

34

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

¢ Category. Post-Training Quantization

4. Static Quantization. Precomputes and fixes model parameters using a calibration dataset.
This minimizes inference overhead but requires careful preparation.
* How? We quantize both weights and activations based on a representative dataset.

* Applications. Effective situations where latency and power consumption are critical. e.g.,
edge device deployment

¢ Category. Post-Training Quantization

KEY CONCEPT 17. Both dynamic and static quantization are inference-focused methods.

4.2 Model Pruning

In model pruning, we remove parts of a trained machine learning model — usually weights, neu-
rons, or layers — to reduce its size. The goal is to make the model more efficient without signifi-
cantly degrading its accuracy.?

¢ Why? Pruned models are smaller. Thus, they (a) consume less memory, (b) are faster (both
to train and at serving time), and (c) less prone to over-fitting.

* What to prune? We can prune individual weights, parts of neural layers, or entire neural
layers.
o Weight pruning. We remove individual network weights by setting them zero

=» How? We prune weights with the smallest absolute values, since they contribute
the least to a model’s output.

=» Implications. After pruning, the model becomes sparse.

o Activation/neuron pruning. We remove certain dimensions of our hidden space, which
reduces the number of actions that we have to make. This is effectively pruning parts of
a neural layer.

=» How? We try to prune neurons that show little activation.

=» Variants. In Transformers, we can also prune attention heads which are sub-layers.

o Layer pruning. We remove entire layers from our neural network. The first and last
layers are usually critical.

=» How? We identify low-impact layers or redundant layers empirically.

* How? Pruning is done in these steps.

1. Identify what to prune. In addition to using weight or activation values, we can also use
a trained model’s gradients to infer weight/neuron importance.

2. Evaluate pruned model. We test the pruned model’s performance on a validation/test set.

If performance drops drastically, important model parts were pruned.

3. Fine-tuning (optional). After pruning, we retrained or fine-tune the model to better main-
tain its accuracy.

35

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

4.3 Knowledge Distillation

Knowledge distillation is a model compression technique where a smaller, simpler model (called
the student) is trained to mimic the behavior of a larger, more complex model (called the teacher).

We want the student model to learn to replicate the teacher’s predictions, while maintaining

comparable performance.?®

* Why? Knowledge distillation decreases a model’s overall size while preserving its perfor-

mance.

o Efficiency. Smaller models are faster, consume less memory, and are easier to deploy.

o Maintains accuracy. In some cases, the resulting student model performs better than the
same architecture trained independently on the original dataset. This happens, because
the student benefits from the teacher model’s broader knowledge.

* How? Unlike traditional training, where a model is trained using hard labels (e.g., class
0, class 1), the student is trained on soft targets — the probability distribution (i.e., logits)
produced by the teacher model.

o Soft targets provide more information about the relative confidence of predictions, which
helps the student learn better.

o The distillation loss is often based on the KL Divergence between the teacher’s soft

outputs and the student’s outputs.
o After initial training, we sometimes fine-tune the student model to further increase its

performance.

¢ Variants. Sometimes, the student is also trained to match the intermediate representations of
the teacher model, not just the output. This is called feature-based distillation.?

5. INFERENCE OPTIMIZATIONS

Transformers are heavily memory bound during inference due to a low throughput rate.

1. Auto-regressive token generation. In the naive implementation, we have a very large model that
needs to process each token that it outputs in order to predict the next token. Meaning, we
load a giant model into memory for very few forward passes.

2. Smaller batch sizes. In most cases, a Transformer is handling much smaller batch sizes during

inference than during pre-training.

During model training, teacher forcing and larger batch sizes balance the costs of loading a
large model into memory. For these reasons, throughput is significantly lower during inference

than during model training.

All the inference optimization techniques discussed in this section focus on different ways to in-

crease Transformer throughput.

36

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

5.1 Combined QKYV Projection

In Section 1.3, we apply three separate linear projections (matrix multiplications) to the input em-
beddings Xinput to generate the Q, K, V' feature matrices. Alternatively, we can combine the QKV

projection into a single operation.”

e How does it work? We multiply Xinput € R**“metel by a weight matrix Wogy € Rmode*3dk and
then split the result into three components. i.e.,

QKV = XinputWQKV 5)

, where we index QKV € R* x3di 10 get the separate Q, K, and V matrices. We access each

specific matrix by selecting its associated columns. i.e.,

Q = QKVI;,: dy]
K = QKV[I,dk . de]

V = QKV[:,2dy]

* Understanding low-level memory access. The combined QKV projection doesn’t change the
computational complexity (number of operations), but it reduces the number of memory

lookups required.

o At the lowest levels in memory, all matrices are stored as one-dimensional arrays.

Ale, °] ACO, 53

Aoy i)
%] ACr, n) A[/:flﬁ NEEFEENEUENEN
AN S \ mzO,l| T \)
0,0
oy AL Ao Mgy AL
Alz. 3)
(a) A is a two-dimensional matrix of the size m x n (b) In low-level memory, matrix A is represented as a

1D array

Figure 23: Matrices are always represented as 1D arrays in low-level memory.

o Accessing consecutive elements in a 1D memory array is efficient because they are

stored in contiguous memory blocks.

o Accessing non-consecutive elements, such as when selecting specific columns from a
matrix (e.g., splitting QKV into Q, K, V), incurs a higher memory lookup cost. This is
due to increased cache misses and the overhead of retrieving scattered indices.

o When accessing non-consecutive indices in a large array, the lookup process becomes so
inefficient that it’s faster to copy the relevant elements into a new contiguous 1D array
before performing reoccurring matrix operations.

37

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

Prad.

alla. A28
ALz, EEFESEENERIN ALY AE A AGS) AR
mz0,l| \
ADSY AoR\ArG) AGS) AR 0 208, Acy 1)
= |
AL Al16) A(2p
(a) Accessing consecutive array indices is computa- (b) Accessing nonconsecutive indices in large arrays

tionally cheap is computationally expensive

Figure 24: The memory lookup cost depends on the matrix size and whether we’re accessing consecu-
tive/nonconsecutive indices.

* QKV memory costs. Performing one large matrix multiplication tends to be more efficient for
hardware accelerators (like GPUs or TPUs) than performing multiple separate smaller matrix
multiplications so long as QKV doesn’t exceed a certain size.

1. When is it efficient? In the combined QKV approach, we only load the input tensors
Xinput and Woky once and perform a single matmul to generate Q, K, V.

o In contrast, the traditional self-attention mechanism requires three separate mem-
ory accesses to load the Wy, Wy, and Wy matrices, and Xinpyt three times, resulting
in additional overhead.

o For smaller sequence lengths (e.g., during inference), the overhead of multiple mem-
ory accesses in the classical approach becomes significant. This makes the combined
QKYV approach more efficient.

2. When is it inefficient? Suppose that we have a batch size b = 1 and a sequence length
s = 1. In this case, we have two less dimensions for QKV. This makes the combined
QKYV 1D array representation contiguous, resulting in no additional overhead.

o Non-contiguous arrays. Normally, b > 1 and s > 1. Thus, as s (and b) grows, the
indexing nonconsecutive QKV elements in its 1D array low-level memory repre-
sentation becomes increasingly inefficient.

o Copying as a solution. One possible solution is to copy the nonconsecutive elements
of QKV into a new 1D array for better access efficiency in following matrix opera-
tions. Of course, the copying process incurs its own costs and consumes significant
memory when QKV is very large.

o Trade-off. There’s a turning point when the cost of indexing nonconsecutive ele-
ments in QKV exceeds the benefits of looking up a single memory lookup for both
Wokyv and Xinput-

o Hardware dependencies This turning point is hardware-specific, as it depends on the
relative cost of memory lookups versus computation (floating-point operations per

second) on the hardware being used.

* When to use QKV'? The weights in Wy are equivalent to those in concat(WQ, Wk, Wy), since
Wokv can be constructed by concatenating Wg, Wy, and Wy.

38

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

o Training. Typically, we train a Transformer on very large batches, where the size of QKV
becomes substantial. In such cases, indexing nonconsecutive elements from QKV may
introduce greater overhead than the separate memory lookups for Wp, Wk, and Wy.

=» Therefore, during training, we often use separate projections for Q, K, and V to

minimize indexing overhead.

o Inference. Input sequences are usually much smaller. In this scenario, the memory costs
of indexing nonconsecutive QKV elements are negligible compared to the runtime gains

from a single lookup of Woky.

KEY CONCEPT 18. The decision of whether to combine the Q, K, and V projections is a trade-
off between memory and compute efficiency. We have 3 options:

1. Separate Q, K,V projections. We have to perform three separate matrix multiplications.
For very low batch sizes/sequence lengths, each matmul cannot fully utilize the GPU
resources due to the small shapes, leaving idle processors. This implicitly incurs com-

pute costs.

2. Combined QKV projection, no copying. We perform a single matrix multiplication, ensur-
ing an efficient utilization of the GPU. However, indexing nonconsecutive QKV elements
cannot make use of efficient kernels (e.g., for consecutive matrix multiplications/flash at-
tention).

3. Combined QKV projection with copying. We resolve the element access issue from Op-
tion (2) by copying nonconsecutive QKV elements to new 1D arrays, which then incurs
wait time/compute costs that scales with the feature size. For smaller batches/sequence
length, this is negligible, but for large training batches with long sequences, this becomes

significant.

5.2 KV Caching

The KV Cache (Key-Value Cache) optimizes the performance of transformer models at inference

time.%”

® The problem. Text generation is an autoregressive task, where the model generates text one
token at a time. The model uses all previously seen tokens to maintain context.

o Without caching, the model would recompute the keys and values for all preceding
tokens, leading to many redundant calculations.

® The solution. When the model generates the first word, it calculates the keys and values for
this word and stores them in the KV Cache. For each subsequent word:

1. The model only calculates the new word’s key and value.

2. The model concatenates the newly calculated key and value to their respective cache

tensors, where kv_cache = (key_cache_tensor, value_cache_tensor).

3. The scaled-dot product attention is then calculated using the current token’s query fea-
ture vector, and the feature vectors from the KV Cache.

39

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

Dynamic KV Cache

Static KV Cache

Main Idea

We dynamically increase the KV Cache tensors
as we generate new tokens.

We set a maximum allowed sequence length and
set a fixed KV Cache tensor size during its ini-
tialization.

Initialization

The KV cache starts with a small initial alloca-
tion. Often, the sequence length dimension is
0, meaning no memory is allocated initially for
storing keys and values (R?*9%4), or sometimes
it is initialized with a size of RY*1*dk,

We allocate memory for the KV cache once, ini-
tializing it as a b X Spaximum X dx sized matrix.

Token Gener-
ation Loop

We only compute the key and value for the cur-
rent token.

e We concatenate the newly compute keys
and values along the s dimension of the
KV Cache. Thus, the KV Cache dimen-
sion becomes IRV*Si %4k

e We use the entire KV Cache to compute

T
the attention scores, Q—\/%, and generate
the next token.

We only compute the key and value for the cur-
rent token.

e This key-value pair is stored in the pre-
allocated memory block at the next avail-
able position.

* We use the entire KV Cache to compute

T
the attention scores, %, but mask the at-
Vi

tention scores for keys that we have not
filled yet.

Stop Condi-
tion

We continue until we reach the desired sequence
length or encounter a stop condition (e.g., gen-
erating a stop token). The final shape of the KV
Cache is b X Sgpap X dy.

We repeat token generation until we run out of
pre-allocated memory and then stop, or go over
into a sliding window approach (removing first
key and adding new one).

Pros

(+) An intuitive implementation

(+) Handles memory efficiently when gen-
erating varying sequence lengths

(+) Since memory is pre-allocated, we don’t have
memory allocation overheads during generation
(+) The computation graph doesn’t change,
meaning it can be efficiently compiled

Cons

(-) Resizing the KV Cache means (a) allocating
new memory and (b) copying over existing data.
This adds performance overhead, especially for
longer sequences.

(-) Every time the KV Cache tensor shape
changes so does its computation graph. ML
compilers can only handle static computation
graphs. Thus, the matrix operations are recom-
piled at every token generation (compute costs).

(-) At every generation step, we calculate the at-
tention scores over the whole KV cache, which
is the maximum sequence length. Most of these
scores are masked. Thus, we incur unnecessary
compute costs during the first steps.

(-) If you often generate sequences much shorter
than maximum sequence length, you waste a
significant portion of the pre-allocated memory
(-) There’s also overhead in finding the next
available position in the KV Cache

Table 4: Paradigm shifts introduced by the attention mechanism.

In practice, we don’t feed the user’s input prompt token-by-token into the model and cache

its KV representations separately. We prefill our KV Cache with the user prompt in a single

step to optimize model utilization (throughput).

¢ Scalability. The KV Cache acts as Transformer’s recurrent "memory" during inference. It

grows in memory with larger and larger context lengths. This memory cost is the main

factor limiting transformers in long context applications.

lengths is KV Cache memory consumption.

KEY CONCEPT 19. The KV Cache prevents redundant key and value calculations, which
speeds up text generation.

KEY CONCEPT 20. The main factor limiting Transformer applications to longer context

40

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

KV Caching can either implemented as a Static KV Cache or Dynamic KV Cache.?

1. In a Static KV Cache, we assume a maximum sequence length and set the KV Cache tensor

to a fixed size.

2. In Dynamic KV Caching, we continuously grow our KV Cache tensor by appending the
current token’s K and V values to it along the s dimension.

Table 4 summarizes each KV Caching approach as well its pros and cons. Since the pros and
cons of static vs. dynamic KV caching are complimentary, we often implement a hybrid approach
where we have a "Static" KV Cache that we resize (e.g., by doubling) once the maximum input

sequence length is exceeded.

5.3 Flash Attention

In standard self-attention, the most expensive operation is data movement. Reading and writing to
GPU memory is so costly due to the self-attention layer’s large intermediary matrices (Figure 25).2°

Q:Nxd K:Nxd A=QK":NxN A=sm(A:NxN A do(A) NxN V:iNxd O=AV:Nxd

IXI-‘ I I

Figure 25: The intermediary self-attention matrices (highlighted in pink) are much larger than the attention
layer’s inputs or outputs (image credit).

A =mask(A): NxN

Attention Matrix Mask Softmax Dropout

Flash Attention is an optimized implementation of self-attention, where we avoid storing the
entire large intermediary QK matrix.3

¢ Note. Unlike other optimizations in this section, flash attention also optimizes the LLM train-

ing process.

e Intuition. We rewrite the attention operation to reduce GPU read and write operations. This
is a hardware-aware optimization that does not approximate self-attention.

* Background. Flash attention is a hardware-aware implementation of attention. Meaning, we
need to understand some basic things about GPUs:?’
o GPUs have extremely fast compute times relative to their slow memory access times.
o Maximizing compute and minimizing memory access is the key for efficiency.

o GPU has a memory hierarchy, where high bandwidth memory (HPM) is much slower
than static RAM (sRAM). See Figure 26.

41

https://www.youtube.com/watch?v=gMOAud7hZg4
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

);Z..‘\\:\,l: 19TB/S (20 MB)

HEM: 1.5 TB/s (40 GB)

:12.8 GB/s
(>1TB)

Memory Hierarchy with
Bandwidth & Memory Size

Figure 26: The GPU sRAM is about three times faster than HBM (image credit).

* How? We break our attention matrix into blocks and recompute intermediary matrices to

minimize I/O operations.?’

1. Tiling. We reformulate the softmax in an iterative way using a mathematical property
called "scaling" (Equations 6-7).

softmax ([A1, Az]) = [softmax(A;), B softmax(A>)] (6)

Vi

2

softmax([A1, Az]) = a softmax (A1) V; + B softmax(Az)Va (7)

This allows us to load data block by block from HBM into sSRAM when computing
attention. We compute each tile separately and aggregate the results from each tile with
Equation 7.

KEY CONCEPT 21. By reformulating the softmax in an iterative way, we no longer
need to store the entire attention matrix in HBM.

2. Recomputation. We don’t store the attention matrix from the forward pass. We recom-
pute it in the backward pass, since it’s cheaper to recompute than to load.

® Results. On most hardwares, flash attention offers 2-4x speedup, and 10-20x memory reduc-
tion without making any approximations. Exact performance gains depend on the hard-

ware.29

o Flash attention is widely used in LLM development, since it offers significant com-
pute/memory performance gains without sacrificing model performance.

o This increased memory capacity allows us to increase our context window during train-
ing, which ultimately yields better quality model outputs.
5.4 Mixture of Experts

Mixture of Experts (MoE) is an alternative to pruning the feed-forward layer within an attention
block.

¢ Intuition. Rather than having one very wide feed-forward network, we have several smaller

feed-forward networks running in parallel (Figure 27).3!

42

https://www.youtube.com/watch?v=gMOAud7hZg4
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

o Each feed-forward network specializes in a specific type of input (e.g., different modal-
ities).

o A small model, called a router, dynamically selects the correct feed-forward network
based on the given input.

.
.
.
-
y .7
T .
[Add + Normalize]
[Switching FFN Layer]
[Add + Normalize]
A A
T - i —— J
Seia=ntion r—bl Add + Normalize |<—
f . f f
X AN)
N Self-Attention
N ~
~ N 1
s Positional Positional
AR N embedding E embedding E)
~
X1 EEE@II] x[TTTTT]
More Parameters

Figure 27: The feed forward layer in classical self-attention vs. mixture of experts implementation (image
credit)

* Implications. Mixture of Experts speeds up inference times, since we run less computations
during each forward pass. However, training becomes more complex since the router needs

to learn load balancing.
* Prevalence. Almost all larger LLMs (70B+ parameters) use Mixture of Experts at this point.

* Drawbacks. Even though a smaller number of parameters are "active" in each forward pass,
the inactive parameters still occupy GPU memory. Meaning, MoE is just as memory-expensive
as a full-scale dense model.

5.5 Multi-Query Attention

Multi-query attention is an inference optimization technique, where we space key-value pairs
across different attention heads in the same self-attention layer.32

43

https://arxiv.org/pdf/2101.03961
https://arxiv.org/pdf/2101.03961
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

Multi-head Multi-query

Values U
Keys

(a) Each head computes its own key-value pairs (b) Key-value pairs are shared across attention heads

-

Figure 28: Classical multi-head attention vs. multi-query attention (image credit).

If we want to serve the model using multi-query attention, then we need to train it with
multi-query attention.

* Extreme cases. We can either reuse all key-value pairs across a self-attention layer or only
compute separate, unique key-value paris.

1. In classical self-attention, each attention head computes its own key-value pairs.
2. In the most extreme application of multi-query attention, all heads share the same key-

value pairs and only their queries differ.

e Why? Multi-query attention minimizes the number of key-value pairs that we need to com-
pute, which drastically reduces the KV Cache size.

* Performance. In the best case, the model’s inference predictions are comparable those of a clas-
sical self-attention model. In the worst case, multi-query attention performs slightly worse.

KEY CONCEPT 22. Multi-query attention drastically reduces the KV Cache size, which increase
our possible context length window.

5.6 Speculative Decoding

Speculative decoding is an LLM inference optimization method, where we use a smaller, faster
auxiliary model Mgy 11 to propose token batches to a larger, more accurate model Mlarge.33

* Why? LLM inference is an auto-regressive decoding task, where we (a) generate the text
token-by-token and (b) each token depends on the previously generated tokens.>*

o GPU memory consumption. When we do a forward pass through a model, we need to
load all its parameters into memory. The larger the model, the more parameters we
have to load into memory.

=» GPUs have very fast processors, but getting data onto these processors can be slow.
This makes GPUs heavily memory bound at smaller batch sizes.

=» Thus, we need to balance the number of parameters to load into memory against
the number of floating point operations per second.

44

https://arxiv.org/pdf/2305.13245
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

=» i.e, We need to maximize the number of compute operations we do per byte.

o Large vs. small models. Inputting a very small batch size (e.g., 1) into a large model
(> 70B parameters) leads to poor GPU utilization. However, larger models also tend to
generate higher quality outputs.

* How? The smaller model generates multiple tokens, which we call a speculative batch. The
speculative batch is inputted into the larger model, where we compare the last prediction
token of the smaller and larger models.>

o If there’s a conflict, the larger model’s last generated token is kept. Everything in the
speculative batch after the mismatch is discarded (Figure 29).

o Implementation trade-off. We want our speculative batch to be large enough to significantly
reduces the number of forward passes for Miage. If the batch size becomes too large, we are
more likely to encounter a mismatch, where we have to redo the computations anyways.

45

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

L}

Horpt: ™ Hos ae oy oy

ZD £;TCO°‘L n ’h-f(\:] l"ﬂt‘lé/(@“ MV CQCJ'\C)
Lb EnchJQ N bld' no(-M (-—-—-l ____)

?rl‘bL\d‘ M '60&-2/1_3 Lerth ‘6!'\() mooloA

5 .Sitep;] £
KV Ceche = H"OG'][S@CDEL\('
W\ lh,. c.,e 0

-\.c)ee‘,j

f7

@ Clne.d—- anfmsqﬂ with L(f rocled

MIEMATCH
bobaas i« ay
WV Gacke. —-rBIG datet J epusie a3 o
A Sefe tblen b

Mo ce .f'e.,,.,veqa]

GlpD Prject o adchel bhon, plus fist
m.snoal'o‘-d (erd;o}ea! ‘ﬁ b& mdd)

D6 batk o o 4 e e Hen
ond cofiwe unhl deng

Figure 29: The main steps of speculative decoding

46

https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

5.7 Continuous Batching

Loading our model parameters into GPU memory is a very expensive operation. Batching allows
us to load our model into memory once and then using it to process many input sequences, leading
to better GPU utilization.

There are two main types of batching:®®

1. Static batching. In more traditional deep learning models, the model outputs are uniform in
size. Meaning, we can have good GPU utilization by fixing our inference batch size and only
returning the results once the entire batch has been processed.

In contrast, LLM inference is an iterative process where outputs vary in length. In particular,
for every request we must:

(a) Process the prompt. We start with a sequence of tokens called the prefix or prompt.

(b) Complete the sequence. The LLM produces a sequence of completion tokens until (a) a

stop token is generated or (b) we reach our maximum sequence length.

Meaning, if we apply static batching to LLM inference, we drastically reduce our model
throughput since we can spend a long time waiting for one request to finish before returning
the entire batch’s results (Figure 30).%

((

L, T Tq T Tg Tp Tg la. 15 Tq 15 g 19

E' g: g' Sl §, _Sl_ [
|6, 8% S |6, 8% v

S’j S'j 5’3 83 S'j 5’3
Sy Sq1 %] % | Sy |5¢ %412

Figure 30: A static LLM batch is not computationally efficient. Yellow represents the prefix token, and blue
the end-of-sequence tokens (image credit).

This reduces the number of FLOPS we can perform while our cost of loading the model
parameters into memory remains fixed. i.e., We have poor GPU utilization. The more our
generated sequences vary in length, the worse this problem becomes.

2. Continuous batching solves this problem by implementing iterative-level scheduling (at
each time step).

e Implementation. Once a sequence in our batch is completely generated, we directly send
the completed sequence to the client. We use this free memory to process a new incom-
ing request (Figure 31).%

o Prefilling. User prompts can vary greatly in length. Thus, we place our user requests
in a queue and prefill each request before adding it to a batch "slot".

47

https://www.anyscale.com/blog/continuous-batching-llm-inference
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

T G N BTG T T T T T % T T

S [s. |5 % 7 %
118 BE 5118y %j

S'j 93 S’J S'j S') S,_j 55 95
S({ Sl{ Sl{ SL[Sl{ SL[Sl{ SL[

Figure 31: A continuous LLM batch accepts new requests once old requests have been finished, which
improves GPU utilization. Prefill tokes are in yellow, end-of-sequence tokens in blue (image credit).

e Limitations. Continuous batching only addresses the fact that our end-of-sequence to-
kens vary in size. However, our prefix token length also varies from request to request.

Thus, we just pad our prefix tokens so that they’re in an uniform size.

AlA A A

€

B| B|B B "

c(c({c(c|C|C

Figure 32: We pad each request’s prefix tokens to ensure a uniform sequence
length at time step ¢ (image credit).

Continuous batching doesn’t resolve the fact that our user prompts also vary in
length.

* Results. Continuous batching improves model throughput, which in turn improves la-

tency. This can lead up to 20x improvements

6. FINE-TUNING OPTIMIZATIONS

6.1 Low-Rank Adaptation

Low-Rank Adaption (LoRA) is an optimization technique that minimizes the compute costs asso-

ciated with fine-tuning weight matrices in large LLMs.3®

* Intuition. It’s too expensive to update the entire weight matrix Woiginal for very large LLMs.
Therefore, we'll learn the changes that we want to make to Woriginal in a lower dimensional

space.

o We save the low-dimensional weight parameter changes needed to fine-tune W into two

much smaller matrices A and B such that
0 Woriginal + Woriginal - Wfine—tuned (8)

5Woriginal =BA)

48

https://www.anyscale.com/blog/continuous-batching-llm-inference
https://www.youtube.com/watch?v=PqHVpvvHLpE
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

o Figure 33 visualizes the compute costs saved by using fining a low-rank approxima-

tion.%”
Forward pass with Forward pass with
updated model updated model

/+\ /+\

Pretrained

. Pretrained
weights

14

weights

W
\/

Regular finetuning Low-rank
approximation

Figure 33: The weight updates in regular fine-tuning vs. low-rank adaptation (image credit)
 Implementation. While LoRA can hypothetically be applied to any part of a Transformer, it’s
been empirically shown to work best when only applied to the self-attention layers.

* Prevalence. LoRA is a very popular topic in academia, but it’s still important for fine-tuning
larger (70B+ parameter) models when:

1. We have limited compute resources for fine-tuning

2. We have to fine-tune many different versions of a very large LLM

49

https://www.youtube.com/watch?v=rgmJep4Sba4
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

6. REFERENCES

[1] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin, “Attention is all you need,” Advances in neural information processing systems, 2017.

[2] D. Bahdanau, “Neural machine translation by jointly learning to align and translate,” arXiv
preprint arXiv:1409.0473, 2014.

[3] J. Alammar, “The illustrated transformer.” Blog post, 2018. https://jalammar.github.io/

illustrated-transformer/.

[4] A. Karpathy, “Let’s build gpt: from scratch, in code, spelled out.” YouTube video, 2023.
https://www.youtube.com/watch?v=kCc8FmEbinY.

[5] 3BluelBrown, “Attention in transformers, step-by-step | dl6.” YouTube video, 2024. https:
//www .youtube. com/watch?v=eM1lx5fFNoYc.

[6] £ Khan, “Solving transformer by hand: A step-by-step math ex-
ample.” Blog post, 2023. https://levelup.gitconnected.com/

understanding-transformers-from-start-to-end-a-step-by-step-math-example-16d4e64ebebl.

[7] P. Lippe, University of Amsterdam Deep Learning Tutorials. University of Amster-
dam, 2022. https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/

tutorial6/Transformers_and_MHAttention.html.
[8] A.Radford, “Improving language understanding by generative pre-training,” 2018.

[9] J. Alammar, “The illustrated gpt-2 (visualizing transformer language models).” Blog post,
2019. https://jalammar.github.io/illustrated-gpt2/.

[10] 3BluelBrown, “How might llms store facts | dl7.” YouTube video, 2024. https://www.
youtube . com/watch?v=9-J10dxWQs8&t=932s.

[11] P. Lippe, Tutorial 15: Vision Transformers, ch. Tutorial 15: Vision Transformers. University
of Amsterdam, 2022. https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_

notebooks/tutoriall5/Vision_Transformer.html.

[12] NVIDIA, “Nvidia nemo framework user guide: Overview.” Documentation, Feb 2025. https:

//docs.nvidia.com/nemo-framework/user-guide/latest/overview.html.

[13] A.Karpathy, “[1hr talk] intro to large language models.” YouTube video, 2024. https://www.
youtube . com/watch?v=zjkBMFhNj_g.

[14] Y. Dubois, “Stanford cs229 i machine learning i building large language models (llms).”
YouTube lecture, 2024. https://www.youtube.com/watch?v=9vM4pINNOTs.

[15] K. Jordan, Y. Jin, V. Boza, J. You, F. Cesista, L. Newhouse, and J. Bernstein, “Muon:
An optimizer for hidden layers in neural networks.” https://web.archive.org/web/
20250122060345/https://kellerjordan.github.io/posts/muon/, 2024.

50

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/
https://www.youtube.com/watch?v=kCc8FmEb1nY
https://www.youtube.com/watch?v=eMlx5fFNoYc
https://www.youtube.com/watch?v=eMlx5fFNoYc
https://levelup.gitconnected.com/understanding-transformers-from-start-to-end-a-step-by-step-math-example-16d4e64e6eb1
https://levelup.gitconnected.com/understanding-transformers-from-start-to-end-a-step-by-step-math-example-16d4e64e6eb1
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial6/Transformers_and_MHAttention.html
https://jalammar.github.io/illustrated-gpt2/
https://www.youtube.com/watch?v=9-Jl0dxWQs8&t=932s
https://www.youtube.com/watch?v=9-Jl0dxWQs8&t=932s
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial15/Vision_Transformer.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/tutorial15/Vision_Transformer.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/overview.html
https://docs.nvidia.com/nemo-framework/user-guide/latest/overview.html
https://www.youtube.com/watch?v=zjkBMFhNj_g
https://www.youtube.com/watch?v=zjkBMFhNj_g
https://www.youtube.com/watch?v=9vM4p9NN0Ts
https://web.archive.org/web/20250122060345/https://kellerjordan.github.io/posts/muon/
https://web.archive.org/web/20250122060345/https://kellerjordan.github.io/posts/muon/
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

[16]

(17]

(21]

[22]

(23]

[25]

[29]

[30]

V. Gupta, T. Koren, and Y. Singer, “Shampoo: Preconditioned stochastic tensor optimization,”
in International Conference on Machine Learning, pp. 1842-1850, PMLR, 2018.

S. Raschka, “New llm pre-training and post-training paradigms.” Blog post, Jan 2024. Blog
post on Ahead of Al https://magazine.sebastianraschka.com/p/new-llm-pre-training-and-

post-training.

S. Raschka, “Understanding reasoning Ilms.” Blog post, Feb 2025. https://

sebastianraschka.com/blog/2025/understanding-reasoning-1lms.html.

3BluelBrown, “Transformers (how llms work) explained visually | dl5.” YouTube video,
2024. https://www.youtube.com/watch?v=wjZof JXOv4M&t=1455s/.

P. Lippe, University of Amsterdam Deep Learning Tutorials. ~ University of Amster-
dam, 2022. https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/
scaling/JAX/overview.html.

H. F O. Team, “Quantization.” Online Documentation, 2024. https://huggingface.co/

docs/optimum/en/concept_guides/quantization.

M. Grootendorst, “A visual guide to quantization.” Blog post, jul 2024. https://newsletter.

maartengrootendorst.com/p/a-visual-guide-to-quantization.

Deepchecks, “Top llm quantization methods and their impact on model qual-
ity,” Deepchecks ~Community Blog, nov 2024. https://www.deepchecks.com/

top-1llm-quantization-methods-impact-on-model-quality/.

S. Paul, “Diving into model pruning in deep learning.” Blog
post, jun 2021. https://wandb.ai/authors/pruning/reports/
Diving-Into-Model-Pruning-in-Deep-Learning--VmlldzoxMzcyMDg.

D. Bergmann, “What is knowledge distillation?.” Blog post, apr 2024. https://www.ibm.com/
think/topics/knowledge-distillation#: ™~ :text=Knowledge’,2020distillation%20isY%
20a%20machine, for)20massive’,20deep’%20neural’,20networks.

C. Yang, X. Yu, Z. An, and Y. Xu, “Categories of response-based, feature-based, and relation-
based knowledge distillation,” in Advancements in Knowledge Distillation: Towards New Hori-
zons of Intelligent Systems, pp. 1-32, Springer, 2023.

M. Oleszak, “Transformers key-value caching explained.” Blog post, dec 2024. https:

//neptune.ai/blog/transformers-key-value-caching.

H. F. T. Team, “Best practices for generation with cache.” Online Documentation, jan 2025.
https://huggingface.co/docs/transformers/v4.44.2/en/kv_cache.

T. Dao, “Flashattention - tri dao | stanford mlsys no. 67.” YouTube video, 2023. Stanford
MLSys Seminars No. 67.

T. Dao, D. Fu, S. Ermon, A. Rudra, and C. Ré, “Flashattention: Fast and memory-efficient
exact attention with io-awareness,” Advances in Neural Information Processing Systems, vol. 35,
pp- 16344-16359, 2022.

51

https://magazine.sebastianraschka.com/p/new-llm-pre-training-and-post-training
https://magazine.sebastianraschka.com/p/new-llm-pre-training-and-post-training
https://sebastianraschka.com/blog/2025/understanding-reasoning-llms.html
https://sebastianraschka.com/blog/2025/understanding-reasoning-llms.html
https://www.youtube.com/watch?v=wjZofJX0v4M&t=1455s/
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/scaling/JAX/overview.html
https://uvadlc-notebooks.readthedocs.io/en/latest/tutorial_notebooks/scaling/JAX/overview.html
https://huggingface.co/docs/optimum/en/concept_guides/quantization
https://huggingface.co/docs/optimum/en/concept_guides/quantization
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
https://newsletter.maartengrootendorst.com/p/a-visual-guide-to-quantization
https://www.deepchecks.com/top-llm-quantization-methods-impact-on-model-quality/
https://www.deepchecks.com/top-llm-quantization-methods-impact-on-model-quality/
https://wandb.ai/authors/pruning/reports/Diving-Into-Model-Pruning-in-Deep-Learning--VmlldzoxMzcyMDg
https://wandb.ai/authors/pruning/reports/Diving-Into-Model-Pruning-in-Deep-Learning--VmlldzoxMzcyMDg
https://www.ibm.com/think/topics/knowledge-distillation#:~:text=Knowledge%2020distillation%20is%20a%20machine,for%20massive%20deep%20neural%20networks
https://www.ibm.com/think/topics/knowledge-distillation#:~:text=Knowledge%2020distillation%20is%20a%20machine,for%20massive%20deep%20neural%20networks
https://www.ibm.com/think/topics/knowledge-distillation#:~:text=Knowledge%2020distillation%20is%20a%20machine,for%20massive%20deep%20neural%20networks
https://neptune.ai/blog/transformers-key-value-caching
https://neptune.ai/blog/transformers-key-value-caching
https://huggingface.co/docs/transformers/v4.44.2/en/kv_cache
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

Transformers Decoded: The Handbook

[31] W.Fedus, B. Zoph, and N. Shazeer, “Switch transformers: Scaling to trillion parameter models
with simple and efficient sparsity,” Journal of Machine Learning Research, vol. 23, no. 120, pp. 1—-
39, 2022.

[32] J. Ainslie, J. Lee-Thorp, M. de Jong, Y. Zemlyanskiy, F. Lebrén, and S. Sanghai, “Gqga: Train-
ing generalized multi-query transformer models from multi-head checkpoints,” arXiv preprint
arXiv:2305.13245, 2023.

[33] Y. Leviathan, M. Kalman, and Y. Matias, “Fast inference from transformers via speculative
decoding,” in International Conference on Machine Learning, pp. 19274-19286, PMLR, 2023.

[34] Y. Leviathan, M. Kalman, and Y. Matias, “Looking back at speculative decoding.” Blog post,
dec 2024. https://research.google/blog/looking-back-at-speculative-decoding/

[35] C.Daniel, C. Shen, E. Liang, and R. Liaw, “How continuous batching enables 23x throughput
in llm inference while reducing p50 latency.” Blog post, jun 2023. https://www.anyscale.

com/blog/continuous-batching-11lm-inference.

[36] E.J. Hu, Y. Shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen, “Lora: Low-
rank adaptation of large language models,” arXiv preprint arXiv:2106.09685, 2021.

[37] S. Raschka, “Insights from finetuning llms with low-rank adaptation.” YouTube video, 2024.
https://www.youtube.com/watch?v=rgmJep4Sba4.

52

https://research.google/blog/looking-back-at-speculative-decoding/
https://www.anyscale.com/blog/continuous-batching-llm-inference
https://www.anyscale.com/blog/continuous-batching-llm-inference
https://www.youtube.com/watch?v=rgmJep4Sba4
https://bellanich.github.io
https://www.linkedin.com/in/bella-nicholson
https://github.com/bellanich

	The Attention Mechanism
	History
	What does self-attention accomplish?
	How does self-attention work?
	Multi-Head Attention
	Properties
	Positional Encodings

	Transformer Architectures
	Decoder Only Transformers
	Encoder-Decoder Transformers
	Limitations

	Foundation Model Lifecycle
	Data Curation
	Training Deep Networks
	Training Transformers
	Pre-Training
	Post-Training

	Inference
	Retrieval Augmented Generation (RAG)

	Working at Scale
	Parallelization Strategies
	Kernel Development

	Model Compression
	Quantization
	Model Pruning
	Knowledge Distillation

	Inference Optimizations
	Combined QKV Projection
	KV Caching
	Flash Attention
	Mixture of Experts
	Multi-Query Attention
	Speculative Decoding
	Continuous Batching

	Fine-Tuning Optimizations
	Low-Rank Adaptation

	References

